
	

https://soxapurawobawar.pofezaf.com/834957071782566432057976090873399675265908?lezomivabelikofefadijufibunonowogovadedosusekusod=pidonoxelilifunatusijifizonebepojumovugijebexulozezegovituwikokopigidelebodevoginimadimulinojomexekutubafajimezubirukemurukawugogezenemoloxozejedukavadanazoxixetumufirubojaruvabajiwutewumuzamozamitiba&utm_kwd=angular+10+interview+questions+and+answers&sexalijoxivakavawupifatuxunawejafasodivenuvosuwopebenumitunufanufexutaxufususodunadagijajenapoka=lurofiwevowefasorijovalasamozolanuforotenobiluzuzomufilosaruwikifibujebutovufavuparunagufajuwovipebo

Practicing	answers	to	anticipated	technical	interview	questions	helps	build	confidence	and	prepares	candidates	for	challenging	queries.	Utilizing	a	mock	interview	or	solo	practice	can	significantly	enhance	preparation.	Acquiring	expertise	in	Angular,	an	open-source	framework	developed	by	Google,	is	highly	valued	in	Full-Stack	Engineer	and	Front-
End	Engineer	roles.	Familiarity	with	Angular	will	enable	you	to	tackle	common	interview	questions	effectively.	Angular	applications	rely	on	the	angular.json	file	for	configurations	and	declarations	within	specific	modules.	The	application's	components	are	declared	using	selectors,	templates,	and	stylesheets.	These	elements	provide	access	information,
HTML	content,	and	style	sheets	unique	to	each	component.	By	bootstrapping	the	application	through	Angular,	it	sets	up	a	browser	environment	that	serves	necessary	data	from	the	index.html	file.	Prior	to	Angular's	introduction,	developers	utilized	VanillaJS	and	jQuery	for	dynamic	websites.	However,	issues	arose	as	features	increased	in	complexity.
Angular	addresses	these	problems	by	dividing	code	into	smaller	components	and	providing	built-in	features	such	as	routing,	state	management,	and	HTTP	services.	The	framework	uses	HTML	for	rendering	UI,	making	it	easier	to	use	than	JavaScript.	With	Google's	long-term	support	announcement,	Angular	solidifies	its	position	as	a	leading	client-side
framework.	AngularJS	and	Angular:	Key	Differences	in	Command	and	Operating	Languages	AngularJS	utilizes	JavaScript	and	the	MVC	design	model,	whereas	Angular	employs	TypeScript	with	components	and	directives.	Angular's	architecture	differs	from	AngularJS's	in	several	ways,	including	language,	structure,	expression	syntax,	and	mobile
support.	In	terms	of	programming	languages,	Angular	uses	TypeScript	which	is	statically	typed	and	provides	better	performance	for	larger	applications	compared	to	AngularJS	which	utilizes	a	dynamically	typed	language.	Expression	syntax	also	varies	between	the	two	frameworks.	AngularJS	requires	developers	to	recall	precise	ng-directives	for
binding	events	or	properties,	whereas	Angular	employs	simpler	attributes	for	property	and	event	binding.	The	architectural	difference	lies	in	the	use	of	components	instead	of	controllers	as	directives	in	Angular,	whereas	AngularJS	uses	an	MVC	architecture	consisting	of	a	model,	controller,	and	view.	For	larger	applications,	maintaining	code	is	more
complicated	and	time-consuming	in	AngularJS	due	to	its	structure.	In	contrast,	Angular's	design	makes	it	easier	to	maintain	large-scale	codebases.	AOT	(Ahead-of-Time)	compilation	is	used	in	Angular	because	it	compiles	components	and	templates	before	running	inside	the	browser.	This	process	enables	fast	rendering	as	the	application	can	load	and
render	executable	code	immediately.	AOT	also	reduces	AJAX	requests	for	source	files	by	including	HTML	and	CSS	into	the	compiled	JS	files,	thus	improving	security.	Data	binding	plays	a	crucial	role	in	connecting	application	data	with	the	DOM,	featuring	four	main	forms:	event	binding,	property	binding,	two-way	binding,	and	string	interpolation
binding.	Decorators	are	used	to	add	metadata	to	classes,	objects,	or	methods	without	changing	their	source	code.	Annotations	are	pre-defined	features	that	hold	this	metadata.	When	applied	to	a	class,	they	create	an	array	of	annotations	stored	within	the	"annotations"	attribute	and	pass	metadata	into	the	constructor.	Angular	expressions	bind
application	data	to	HTML	and	evaluate	expressions	against	locally	scoped	objects.	They	can	handle	null	and	undefined	values	and	use	pipes	for	data	formatting.	In	contrast,	JavaScript	expressions	are	evaluated	against	the	global	window	object	and	cannot	access	properties	outside	their	local	scope.	Components	in	Angular	go	through	a	lifecycle	of
phases	when	created.	Lifecycle	hooks	are	used	to	track	a	component's	state	and	trigger	changes	during	specific	phases.	These	hooks	include	ngOnChanges,	ngOnInit,	ngDoCheck,	ngAfterContentInit,	ngAfterContentChecked,	ngAfterViewInit,	ngAfterViewChecked,	and	ngOnDestroy.	Directives	are	classes	that	can	be	imported	into	components	to	add
similar	functionality.	They	have	their	own	behavior	and	are	declared	using	the	@Directive	decorator.	Three	types	of	directives	are	component	directives,	structural	directives,	and	attribute	directives.	Full	of	tips	and	advice	to	make	your	interviews	a	success.	Our	guide	on	answering	behavioral	interview	questions	is	another	great	resource	to	check
out.	Plus,	our	Career	Center	offers	even	more	job-hunting	tools,	from	resume	writing	to	networking	to	building	a	portfolio	that	showcases	your	skills.	And	if	you're	looking	to	learn	something	new	or	level	up	an	existing	skill,	explore	our	catalog	for	courses	in	web	development,	math,	data	science,	programming	languages,	and	more.	Read	on	to	prepare
for	your	dream	job	interview!	In	this	article,	I	provide	answers	to	10	questions	to	help	you	understand	the	basics	of	Angular	and	its	framework	architecture.	Enjoy!	We'll	start	with	a	fundamental	question:	when	would	you	use	the	constructor()	versus	the	ngOnInit()	method?	To	answer	that,	we	need	to	explore	component	lifecycle	and	the	role	of	the
constructor.	Angular	creates	components	based	on	two	phases:	constructing	the	component	tree	and	running	change	detection.	The	constructor()	method	is	invoked	first.	Component	Lifecycle	Hooks	are	methods	on	Components	or	Directives	that	Angular	calls	at	a	specific	moment	in	the	change	detection	process.	The	ngOnInit()	method	is	the	second,
called	once,	indicating	that	the	object	is	ready	to	use	since	Angular	has	set	all	input	properties	and	displayed	data-bound	properties.	Want	more	about	lifecycle	hooks?	We	have	a	series	covering	them	all!	Start	with	our	guide	to	OnInit	and	follow	along.	The	code	added	to	the	constructor	is	always	initialized	before	the	ngOnInit()	method.	Be	sure	that
logic	set	in	the	constructor	isn't	added	too	early,	when	the	component	is	out	of	control.	Directives	might	seem	simple,	but	even	experienced	Angular	devs	haven't	grasped	every	concept	yet.	We'll	explore	advanced	topics	like	Observables	and	Async	Pipe	Identity	Checking	and	Performance,	Web	Components,	and	more!	we	should	focus	on	two	main
aspects:	Network	Performance	and	Runtime	Performance,	to	improve	the	load	time	of	our	Angular	app.	Firstly,	we	need	to	optimize	bundle	size	by	using	Ahead-of-Time	compilation.	This	method	can	also	enhance	Runtime	Performance	by	reducing	computations	required	for	rendering.	Furthermore,	removing	unused	code	through	techniques	such	as
template	whitespace	removal,	code	splitting,	minification,	and	tree-shaking	is	crucial.	Secondly,	we	must	improve	Runtime	Performance	by	optimizing	the	Change	Detection	process.	We	do	this	by	disabling	unnecessary	Change	Detection,	only	running	it	when	needed,	and	applying	strategies	like	onPush,	detaching	and	reattaching	custom	Change
Detection,	or	using	pipes	instead	of	functions	in	interpolations.	Another	area	for	improvement	is	rendering	DOM	elements	efficiently.	Using	virtual	scrolling,	ng-container,	and	trackBy	function	can	help	minimize	the	number	of	DOM	elements,	reducing	loading	time.	Lastly,	Angular	takes	inspiration	from	Web	Components	to	implement	custom
elements.	When	it	comes	to	writing	code	in	a	framework-agnostic	way,	using	custom	elements	in	Angular	offers	several	advantages.	It	improves	reusability	and	readability	of	your	app,	making	it	more	consistent	and	maintainable.	Additionally,	custom	elements	allow	you	to	add	components	to	an	app	at	runtime.	To	learn	more	about	Web	Components,
visit	The	Ultimate	Guide	to	Web	Components.	Web	Components	map	Angular	functionality	to	native	HTML	elements,	making	them	universal	and	compatible	with	any	browser	that	supports	custom	elements	through	the	Web	Platform	feature	(polyfills).	To	create	a	custom	element	in	Angular,	you	extend	the	NgElement	interface	and	define	a	tag.	This
results	in	components	that	look	and	behave	like	regular	HTML	elements.	The	@angular/elements	package	is	crucial	for	this	implementation.	You	can	add	it	to	your	app	using	a	single	command	in	the	CLI.	The	CreateCustomElement	API	exports	a	basic	interface	to	create	cross-framework	components	by	attaching	DOM	API	functionality	of	Angular's
components	and	change	detection	features.	This	allows	you	to	transform	Angular	components	into	elements	understandable	by	browsers	while	providing	all	infrastructure	specific	to	Angular.	Custom	elements	automatically	connect	with	view,	change	detection	system,	and	data	binding	process	defined	in	the	component.	They	also	bootstrap
themselves	with	an	automated	lifecycle,	starting	automatically	when	added	to	DOM	and	destroyed	when	removed.	For	example,	you	can	convert	a	regular	Angular	component	to	a	custom	element	using	the	createCustomElement	function	from	@angular/elements.	AoT	(Ahead-of-Time)	Compilation	is	a	way	to	compile	an	Angular	app	at	build	time,
allowing	a	browser	to	understand	the	templates	and	components	provided	by	Angular.	This	process	is	crucial	for	app	performance,	as	it	efficiently	tree-shakes	code	during	bundling,	removes	unused	directives,	and	eliminates	asynchronous	requests.	It	also	reduces	application	payloads	by	providing	a	smaller	bundle	size	that	doesn't	need	to	be
downloaded	in	full.	Ahead-Of-Time	Compilation:	Benefits	and	Alternatives	in	Angular	Apps	==	To	optimize	runtime	performance,	developers	can	leverage	Ahead-Of-Time	(AOT)	compilation.	However,	its	benefits
extend	beyond	performance	improvements.	Benefits	of	AOT	Compilation	-----------------------------	1.	**Security**:	AOT	compilation	allows	for	error	validation	before	serving	the	app	to	clients.	This	helps	detect	and	prevent	errors,	as	well	as	injection	attacks.	2.	**Code	Protection**:	By	compiling	the	app	before	deployment,	developers	can	ensure	that
sensitive	data	is	not	exposed.	Using	AOT	Compilation	----------------------	To	use	AOT	compilation,	run	commands	like	`ng	build	--aot`	or	`ng	serve	--aot`.	Alternatively,	building	in	production	mode	enables	AOT	compilation	by	default.	Sharing	Data	between	Components	-------------------------------	When	sharing	data	between	components,	developers	can	opt	for:
1.	**Decorators**:	Using	`@Input()`	and	`@Output()`	to	share	data	between	related	components.	2.	**Services**:	Providing	an	interface	for	bi-directional	communication	using	services	like	`BehaviourSubject()`	or	`Subject()`.	3.	**Redux	Pattern**:	Storing	app	data	in	the	ngrx	store	and	passing	it	to	components	via	selectors,	decoupling	component
interactions.	Modular	Architecture	with	Lazy	Loading	---	Lazy	loading	is	a	design	pattern	that	loads	specific	modules	only	when	needed.	This	approach	reduces	bundle	size	and	improves	loading	times.	To	implement	lazy	loading:	1.	**Route	Configurations**:	Define	lazy-loading	modules	as	part	of	route	configurations.	2.
Dynamic	Imports:	Utilize	Angular's	Dynamic	Imports	feature	in	version	8.	Example	-------	```javascript	{	path:	'/admin',	loadChildren:	()	=>	import('./admin/admin.module').then(m	=>	m.AdminModule)	}	```	Best	Practices	for	Lazy	Loading	---------------------------------	1.	**Declare	Default	Pages	as	Non-Lazy**:	Avoid	applying	lazy	loading	to	default
routes,	as	this	can	lead	to	unexpected	behavior.	2.	**Consider	Bundle	Size	and	Performance**:	Optimize	module	loading	based	on	your	app's	complexity	and	performance	requirements.	By	understanding	the	benefits	and	implementation	details	of	AOT	compilation,	services,	and	lazy	loading,	developers	can	optimize	their	Angular	apps	for	improved
performance,	security,	and	maintainability.	1.	To	speed	up	page	loading	times,	consider	optimizing	initial	HTTP	requests	and	computations	to	reduce	unnecessary	overhead	during	page	rendering.	2.	Observables	and	reactive	programming	are	well-suited	for	Angular	due	to	their	ability	to	handle	asynchronous	data	streams	effectively.	This	approach
can	simplify	code	and	improve	performance.	3.	Within	Angular,	various	features	such	as	HTTP	methods,	Router	events,	and	ActivatedRoute	parameters	inherently	return	observable	values,	making	them	suitable	for	reactive	programming.	4.	Reactive	programming	operators	enable	you	to	transform,	filter,	and	process	data	more	efficiently,	resulting	in
clearer	and	more	understandable	code.	5.	The	RxJS	library	provides	numerous	tools	to	simplify	data	operations	and	improve	overall	app	performance.	6.	Observables	excel	at	handling	asynchronous	events,	providing	benefits	over	traditional	Promise-based	solutions	like	JavaScript's	built-in	Promises.	7.	One	of	the	key	advantages	of	using	observables
is	their	ability	to	deliver	multiple	values	in	a	synchronized	or	asynchronous	manner,	allowing	for	easier	error	management	and	control.	8.	A	more	efficient	alternative	to	Template-Driven	Forms	is	Reactive	Forms.	While	it	may	seem	counterintuitive,	Reactive	Forms	offer	better	form	validation,	centralized	logic,	and	improved	unit	testing	capabilities.	9.
By	utilizing	content	projection,	developers	can	inject	dynamic	content	into	a	child	component	from	its	parent,	enhancing	code	readability	and	reusability.	10.	Implementing	uni-directional	data	flow	in	Angular	leads	to	more	predictable	behavior	and	efficient	component	communication	within	the	application	tree.	Unidirectional	data	flow	in	Angular
facilitates	a	smoother	change	detection	process	by	enabling	only	one-way	updates	to	leaf	nodes,	which	ensures	that	all	leaf	components	are	refreshed	simultaneously	when	their	parent	component	changes.	This	approach	not	only	improves	efficiency	but	also	promotes	predictability	and	helps	avoid	complex	cycles	within	the	Change	Detection
mechanism.

Angular	10	interview	questions	and	answers	pdf.	Angular	interview	questions	and	answers	part	2.	Angular	10	interview	questions	and	answers	for	experienced.	Angular	9	interview	questions.	Top	10	angular	interview	questions	and	answers.	#angularinterviewquestions.	Angular	10	interview	questions.

